Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 102(4): 952-961, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36752196

RESUMO

Viviparous rockfishes (Sebastes spp., family Scorpaenidae) mate and store sperm in the ovaries for several months prior to fertilization, as oocytes develop for the parturition season. Although multiple paternity has been documented in single-brooding rockfishes, paternity in consecutive broods of multiple-brooding species has not been studied. Analyses of multilocus microsatellite genotypes in both residual larvae left in the ovary from a previous parturition and upcoming fertilized broods in the same ovary demonstrated evidence of the same sires in consecutive broods in chilipepper (Sebastes goodei) and speckled (Sebastes ovalis) rockfishes. One S. goodei mother showed evidence of multiple paternity from the same two sires in both consecutive broods. The ability to retain sperm, even after a parturition event, for use in subsequent broods, confers an advantage to ensure fertilization and allows for extension of the parturition season. This life-history strategy provides a bet-hedging advantage in the California Current system, an environmentally dynamic ecosystem where larval survivorship and subsequent recruitment to adult populations can vary temporally by orders of magnitude.


Assuntos
Bass , Perciformes , Feminino , Masculino , Animais , Ecossistema , Sêmen , Fertilização , Espermatozoides , Perciformes/genética , Bass/genética , Larva/genética , Repetições de Microssatélites
2.
Glob Chang Biol ; 26(6): 3498-3511, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32153086

RESUMO

Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2 /L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti-predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.


Assuntos
Kelp , Animais , Peixes , Florestas , Hipóxia , Oceanos e Mares
3.
PLoS One ; 12(1): e0169670, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056071

RESUMO

In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2) at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 µatm]) on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes), integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus) exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus), in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.


Assuntos
Dióxido de Carbono/análise , Genômica/métodos , Perciformes/metabolismo , Animais , Comportamento Animal , Dióxido de Carbono/metabolismo , Perciformes/fisiologia , Análise de Componente Principal , Fatores de Transcrição/metabolismo
4.
Am Nat ; 181(6): 799-814, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23669542

RESUMO

Among-individual heterogeneity in growth is a commonly observed phenomenon that has clear consequences for population and community dynamics yet has proved difficult to quantify in practice. In particular, observed among-individual variation in growth can be difficult to link to any given mechanism. Here, we develop a Bayesian state-space framework for modeling growth that bridges the complexity of bioenergetic models and the statistical simplicity of phenomenological growth models. The model allows for intrinsic individual variation in traits, a shared environment, process stochasticity, and measurement error. We apply the model to two populations of steelhead trout (Oncorhynchus mykiss) grown under common but temporally varying food conditions. Models allowing for individual variation match available data better than models that assume a single shared trait for all individuals. Estimated individual variation translated into a roughly twofold range in realized growth rates within populations. Comparisons between populations showed strong differences in trait means, trait variability, and responses to a shared environment. Together, individual- and population-level variation have substantial implications for variation in size and growth rates among and within populations. State-dependent life-history models predict that this variation can lead to differences in individual life-history expression, lifetime reproductive output, and population life-history diversity.


Assuntos
Interação Gene-Ambiente , Modelos Biológicos , Oncorhynchus mykiss/crescimento & desenvolvimento , Animais , Teorema de Bayes , Meio Ambiente , Feminino , Aptidão Genética , Variação Genética , Masculino , Modelos Estatísticos , Oncorhynchus mykiss/genética , Dinâmica Populacional , Processos Estocásticos
5.
Proc Biol Sci ; 280(1759): 20130327, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23516247

RESUMO

Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of 'off the shelf' information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.


Assuntos
Distribuição Animal , Peixes/fisiologia , Animais , Biodiversidade , Ecossistema , Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Reprodução , Temperatura , Movimentos da Água
6.
Evol Appl ; 3(3): 221-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567921

RESUMO

We use a state dependent life history model to predict the life history strategies of female steelhead trout (Oncorhynchus mykiss) in altered environments. As a case study of a broadly applicable approach, we applied this model to the American and Mokelumne Rivers in central California, where steelhead are listed as threatened. Both rivers have been drastically altered, with highly regulated flows and translocations that may have diluted local adaptation. Nevertheless, evolutionary optimization models could successfully predict the life history displayed by fish on the American River (all anadromous, with young smolts) and on the Mokelumne River (a mix of anadromy and residency). The similar fitness of the two strategies for the Mokelumne suggested that a mixed strategy could be favored in a variable environment. We advance the management utility of this framework by explicitly modeling growth as a function of environmental conditions and using sensitivity analyses to predict likely evolutionary endpoints under changed environments. We conclude that the greatest management concern with respect to preserving anadromy is reduced survival of emigrating smolts, although large changes in freshwater survival or growth rates are potentially also important. We also demonstrate the importance of considering asymptotic size along with maximum growth rate.

7.
Evol Appl ; 1(2): 300-18, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567633

RESUMO

Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...